an extension and a generalization of dedekind's theorem

Authors

naoya yamaguchi

kyushu university

abstract

for any given finite abelian group‎, ‎we give factorizations of the group determinant in the group algebra of any subgroups‎. ‎the factorizations is an extension of dedekind's theorem‎. ‎the extension leads to a generalization of dedekind's theorem‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A GENERALIZATION OF A JACOBSON’S COMMUTATIVITY THEOREM

In this paper we study the structure and the commutativity of a ring R, in which for each x,y ? R, there exist two integers depending on x,y such that [x,y]k equals x n or y n.

full text

A generalization of Moulin's Pareto extension theorem

In this note, it is shown that for any strongly complete and quasitransitive binary relation B on a set X, there exists a set of linear orders on X such that B is simultaneously the union of these linear orders and the Pareto extension relation generated by them. No assumptions about the cardinality ́ of X are made. This result generalizes a theorem established by Herve Moulin for finite X.  20...

full text

An extension of the Wedderburn-Artin Theorem

‎In this paper we give conditions under which a ring is isomorphic to a structural matrix ring over a division ring.

full text

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

Generalization of Darbo's fixed point theorem and application

In this paper, an attempt is made to present an extension of Darbo's theorem, and its applicationto study the solvability of a functional integral equation of Volterra type.

full text

A generalization of Martindale's theorem to $(alpha, beta)-$homomorphism

Martindale proved that under some conditions every multiplicative isomorphism between two rings is additive. In this paper, we extend this theorem to a larger class of mappings and conclude that every multiplicative $(alpha, beta)-$derivation is additive.

full text

My Resources

Save resource for easier access later


Journal title:
international journal of group theory

جلد ۶، شماره ۳، صفحات ۵-۱۱

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023